

Safety Overview

The Advantages of a Layered Safety Approach

Phantom's layered safety approach enables control of the vehicle to **remain in a human's hands**, while simultaneously relying on **automated complementary measures** such as audio and visual alerts to augment operator decision-making. Ultimately, our comprehensive **functional safety system** is designed as the final layer that safeguards against the unexpected — similar to Automatic Emergency Braking systems in passenger vehicles.

Why a Layered Safety Methodology?

Human-In-the-Loop

Human operators making real-time decisions in dynamic environments

Predictive & proactive insights:

- Humans are best equipped to make judgment decisions in fast-paced material handling environments
- React in real time to unexpected events or circumstances, such as a person walking around a blind corner
- Quickly differentiate between animate and inanimate objects to minimize downtime, i.e. tape on the floor vs a human or a pallet

360° Field of Vision:

- Camera system provides full & high-res view around the forklift
- Operator view is unobstructed by the frame of the chassis
- Does not require operators to turn in their seat to look over shoulder or drive in reverse, reducing risk of chronic injury

Additional Benefits:

- Situational awareness: operators can easily refer to forklift telemetry, fleet management information, and real-time data insights
- OSHA compliant: rigorous standardized training and certification
- Mitigating risk: removing operators from dangerous environment reduces risk of injury

Complementary Safety Measures

Visual & audible indicators that prompt remote driver and on-site staff to recognize real-time changes and augment decision-making

Remote Operator Console safety indicators & alerts:

- Remotely activated e-stop, speed gauges, tiered safety fields, object detection/avoidance & collision protection, active horn, environment
 recognition, protective stopping, speed limit constraints dynamically responsive to environment, and network latency conditions
- Operation Profiles (e.g., trailer mode, recovery mode)

On-Vehicle safety indicators & alerts:

Vehicle mode information, connection status, safety stop, blue position indicator lights, start up lights, safety field alarm lights, and active horn

2-Way Audio Communication:

- Enables open communication between the remote operator and on-site staff
- · Allows bi-directional communication with on-site staff around the vehicle
- Provides "situational awareness" feedback around the vehicle

(e.g., relevant sounds, perception of environmental elements, and contextual information)

Functional Safety System

All safety functions are designed to meet the relevant performance level determined during the risk assessment process and are designed to meet ISO 13849-1

 Safety sensor solution that meets all relevant* sections of ANSI B56.5 (the common reference standard for AGVs), along with other relevant safety standards and best practices

Intelligent Obstacle Detection, Avoidance and Collision Protection:

- LIDAR sensors and safety encoders that intelligently slow or safely stop vehicle based on sensor inputs
- Dynamic warning and protective field profiles that change based on vehicle direction, speed, and angle (warning field slows the vehicle; protective field stops the vehicle)

Designed with redundant safeguards and diagnostics that solve for complexities such as:

- Latency threshold alerts, network connectivity issues, power errors, or mechanical failures
- Configured to safely stop or slow the vehicle to mitigate unforeseen risks, such as when latency exceeds a certain threshold
- Incorporates highly reliable & independently tested safety components (e.g., safety controllers), and safety architectures designed appropriately to mitigate failures